HatEval
SemEval 2019 Task5: Multilingual detection of hate speech against immigrants and women in Twitter (HatEval) is the international shared task on hate speech detection in English and Spanish tweets. The task is fully described on the CodaLab page.
The HatEval dataser is released under the Creative Commons CC-BY-NC-4.0 license.
To request the dataset, fill in this form:
Publication
The dataset of the HatEval 2019 shared task is described in the paper
SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter.
Please use the following bibtex to cite the paper if you use the data in your research:
@inproceedings{basile-etal-2019-semeval, title = "{S}em{E}val-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter", author = "Basile, Valerio and Bosco, Cristina and Fersini, Elisabetta and Nozza, Debora and Patti, Viviana and Rangel Pardo, Francisco Manuel and Rosso, Paolo and Sanguinetti, Manuela", booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation", month = jun, year = "2019", address = "Minneapolis, Minnesota, USA", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/S19-2007", doi = "10.18653/v1/S19-2007", pages = "54--63", abstract = "The paper describes the organization of the SemEval 2019 Task 5 about the detection of hate speech against immigrants and women in Spanish and English messages extracted from Twitter. The task is organized in two related classification subtasks: a main binary subtask for detecting the presence of hate speech, and a finer-grained one devoted to identifying further features in hateful contents such as the aggressive attitude and the target harassed, to distinguish if the incitement is against an individual rather than a group. HatEval has been one of the most popular tasks in SemEval-2019 with a total of 108 submitted runs for Subtask A and 70 runs for Subtask B, from a total of 74 different teams. Data provided for the task are described by showing how they have been collected and annotated. Moreover, the paper provides an analysis and discussion about the participant systems and the results they achieved in both subtasks.", }